A Sufficient Statistics Approach to Measuring Forward-Looking Welfare Baqaee, Burstein, and Koike-Mori

Discussion by Sewon Hur (FRB Dallas)

Texas Monetary Conference (SMU)

May 2024

Introduction

- Really nice paper!
- Beautiful example of using theory to extract useful information (welfare) from individual/household-level data

Today's discussion

- Ariel presented results from a simple model for intuition and then presented the general environment
- Let me walk through an even simpler example
- Some questions and potential applications

Super simple example

- 2-period lived agents
- ▶ Rentiers finance consumption with initial wealth *w*
- Non-rentiers additionally have income y and face borrowing constraints
- CRRA utility

Rentier's problem

Problem of rentier with initial wealth w can be written as

$$V_t^0(w) = \max_{c_t^0, c_{t+1}^1, a_{t+1}^1} u\left(c_t^0\right) + \beta u\left(c_{t+1}^1\right)$$

s.t. $p_t c_t^0 + a_{t+1}^1 = w$
 $p_{t+1} c_{t+1}^1 = R_{t+1} a_{t+1}^1$

With CRRA utility,

$$c_{t+1}^{1} = \left(\beta R_{t+1} \frac{p_{t}}{p_{t+1}}\right)^{1/\sigma} c_{t}^{0}$$

Rentier's solution

Substitute in to budget constraint,

$$p_{t}c_{t}^{0} + \frac{p_{t+1}c_{t+1}^{1}}{R_{t+1}} = w$$

$$\Rightarrow p_{t}c_{t}^{0} + \frac{p_{t+1}}{R_{t+1}} \left(\beta R_{t+1}\frac{p_{t}}{p_{t+1}}\right)^{1/\sigma} c_{t}^{0} = w$$

$$\Rightarrow p_{t}c_{t}^{0} = \underbrace{\left[1 + \beta^{1/\sigma} \left(R_{t+1}\frac{p_{t}}{p_{t+1}}\right)^{\frac{1-\sigma}{\sigma}}\right]^{-1}}_{b_{t}^{0}} w$$

• Note that
$$\frac{b_{t+1}^1}{b_t^0} = \frac{1 - b_t^0}{b_t^0} = \beta^{1/\sigma} \left(R_{t+1} \frac{p_t}{p_{t+1}} \right)^{\frac{1 - \sigma}{\sigma}}$$

Money Metric

The money metric welfare of household in period t with wealth w in terms of t₀ dollars is given by

$$\begin{split} u\left(c_{t}^{0}(w)\right) &+ \beta u\left(c_{t+1}^{1}(w)\right) = u\left(c_{t_{0}}^{0}(\hat{u})\right) + \beta u\left(c_{t_{0}+1}^{1}(\hat{u})\right) \\ \Rightarrow \frac{1}{1-\sigma} \left(b_{t}^{0}\frac{w}{p_{t}}\right)^{1-\sigma} + \beta \frac{1}{1-\sigma} \left(b_{t+1}^{1}\frac{R_{t+1}w}{p_{t+1}}\right)^{1-\sigma} \\ &= \frac{1}{1-\sigma} \left(b_{t_{0}}^{0}\frac{\hat{u}}{p_{t_{0}}}\right)^{1-\sigma} + \beta \frac{1}{1-\sigma} \left(b_{t_{0}+1}^{1}\frac{R_{t_{0}+1}\hat{u}}{p_{t_{0}+1}}\right)^{1-\sigma} \\ \Rightarrow \left(w\frac{b_{t}^{0}}{p_{t}}\right)^{1-\sigma} \left[1 + \beta \left(\frac{b_{t+1}^{1}}{b_{t}^{0}}\frac{R_{t+1}p_{t}}{p_{t+1}}\right)^{1-\sigma}\right] \\ &= \left(\hat{u}\frac{b_{t_{0}}^{0}}{p_{t_{0}}}\right)^{1-\sigma} \left[1 + \beta \left(\frac{b_{t_{0}+1}^{1}}{b_{t}^{0}}\frac{R_{t_{0}+1}p_{t_{0}}}{p_{t_{0}+1}}\right)^{1-\sigma}\right] \end{split}$$

Money Metric

Substitute
$$\frac{b_{t+1}^1}{b_t^0} = \beta^{1/\sigma} \left(R_{t+1} \frac{p_t}{p_{t+1}} \right)^{\frac{1-\sigma}{\sigma}}$$
 to obtain:
 $\left(w \frac{b_t^0}{p_t} \right)^{1-\sigma} \left[1 + \beta^{1/\sigma} \left(R_{t+1} \frac{p_t}{p_{t+1}} \right)^{\frac{1-\sigma}{\sigma}} \right]$
 $= \left(\hat{u} \frac{b_{t_0}^0}{p_{t_0}} \right)^{1-\sigma} \underbrace{ \left[1 + \beta^{1/\sigma} \left(R_{t_0+1} \frac{p_{t_0}}{p_{t_0+1}} \right)^{\frac{1-\sigma}{\sigma}} \right]}_{b_{t_0}^0}$

• Taking logs and reorganize:

$$\log(\hat{u}) = \log(w) - \log\left(rac{p_t}{p_{t_0}}
ight) + rac{\sigma}{\sigma-1}\log\left(rac{b_t^0}{b_{t_0}^0}
ight)$$

Special version of Proposition 1

The money metric welfare of household in period t with wealth w in terms of t₀ dollars is given by

$$\begin{split} \log(\hat{u}) &= \log(w) \\ &- \log\left(\frac{p_t}{p_{t_0}}\right): \text{ adjusts for price level differences} \\ &+ \frac{1}{1 - \textit{EIS}} \log\left(\frac{b_t^0}{b_{t_0}^0}\right): \text{ adjusts for intertemporal prices} \end{split}$$

• If $EIS = \frac{1}{\sigma} > 1$, $b_t^0 < b_{t_0}^0$ reflects better savings opportunities, requiring compensation

Non-rentier's problem

Problem of non-rentier with initial wealth w and income y

$$V_t^0(w, y) = \max_{c_t^0, c_{t+1}^1, a_{t+1}^1} u(c_t^0) + \beta u(c_{t+1}^1)$$

s.t. $p_t c_t^0 + a_{t+1}^1 = w$
 $p_{t+1} c_{t+1}^1 = y + R_{t+1} a_{t+1}^1$
 $a_{t+1}^1 \ge -\overline{a}$

If borrowing constraint is non-binding,

$$b_{n,t}^{0} = b_{r,t}^{0}$$
$$\hat{u} = w + \frac{y}{R_{t+1}}$$

Money metric for non-rentier

If borrowing constraint is binding,

$$egin{aligned} b_{n,t}^{0} &= rac{w+ar{a}}{w+rac{y}{R_{t+1}}} < b_{r,t}^{0} \ \hat{u} &< w+rac{y}{R_{t+1}} \end{aligned}$$

It is straightforward to show that

$$rac{\partial \hat{u}}{\partial \overline{a}} \geq 0$$

meaning that relaxing borrowing constraints improve the money-metric weflare

Kinked budget constraint

Money metric welfare non-rentier

A question, an observation rather

- I have an old paper (dormant until recently) with Chris Telmer, where we similarly use theory to extract information from household consumption/savings data.
- Similar idea/approach, but very different set of assumptions/implications
- We use a benchmark life-cycle portfolio-choice model to solve for wedges (à la Chari/Kehoe/McGrattan; Hsieh/Klenow) to rationalize household consumption/savings/risky allocations (PSID)
- Heteroegeneous wedges can reflect heterogeneous preferences for discounting/risk, borrowing constraints, heterogeneous returns, etc.

Risky wedge

Risky wedge is very heterogenous across households

Saving wedge

Savings wedge is also very heterogenous across households

Risky wedge and education

Risky wedge does not depend too much on age and education

Saving wedge and education

- Savings wedge not too dependent on working age vs. retirees
- Education seems to be an important determinant

Main takeaway

- From the lens of our analysis, savings wedge is quite heterogeneous
- This could reflect different savings opportunities, different discount factors, etc.
- How does this affect our interpretation of the non-rentier welfare results?

Wishlist and final thoughts

- An illustrative example that provides intuition for the non-rentier results would be very helpful. Perhaps a simple two-period model with non-homothetic preferences.
- How does welfare from job loss depend on education, income, and wealth etc., in addition to age.
- Job loss during aggregate downturn versus idiosyncratic job loss
- Measure the impact of trade (connect to the China trade shock literature)
- Measure the distribution of welfare of the Great Recession?
- Great thought-provoking paper, learned a lot!

Thanks everyone for sticking around, and especially to our amazing hosts!