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1 Equilibrium Computation

We solve the recursive problem over a discretized state space. Speci�cally, we jointly solve

for the equilibrium policy functions, value functions and pricing functions that satisfy the

Markov Perfect Equilibrium de�nition using an iterative procedure until convergence is at-

tained. We described below the key aspects of our numerical solution implemented in FOR-

TRAN.

1.1 State Space Discretization

We used a discrete space consisting of NS = 225 points in the space of output and in�ation

shocks (y, π).1 These grid points are obtained by a discretization of the in�ation-output

process based on a variant of Tauchen (1986).2

The state space for incoming debt B consists of NB = 150 unevenly spaced points and the

state space for outgoing savings policy B′ consists of NB′ = 250 unevenly spaced points. The

uneven spacing on the debt grids allocates more points near the ergodic mean of the debt

distribution. We then approximate the value functions
{
V o (B, s) , V d (B, s) , V c (B, s)

}
, the

policy functions {B′ (B, s) , d (B, s)}, and the debt pricing functions
{
q (s, B′) , qdef (B, s)

}
using a linear interpolation over the discrete state space.

1We use the same grid for both default cost regimes when we have two regimes.
2We modify the benchmark Tauchen (1986) algorithm to allow for the same output grid across cyclicality

regimes. This modi�cation allows us to more precisely compare policy functions across regimes given the
same output realization. The cost of this approach is a slight o�set of the in�ation variance. The induced
discrepancy is symmetric across procyclical and countercyclical regimes with the same variance, however.
More importantly, the results are robust to the standard Tauchen (1986) discretization.
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1.2 Iterative Solution Algorithm

First, we use the debt pricing under no-default and debt rollover as initial guess for the debt

pricing functions
{
q0 (s, B

′) , qdef0 (B, s)
}
. We then iteratively solve for the Markov Perfect

Equilibrium using the loop and updating steps described below.3

Debt pricing loop iteration t

1. No-default value function iteration

Given debt pricing functions
{
qt−1 (s, B

′) , qdeft−1 (B, s)
}
from the previous debt pricing

iteration t− 1,

• We use a value function iteration to solve for the savings policy functions {B′t (B, s)}
and the corresponding no-default value function {V c

t (B, s)} that satisfy the gov-

ernment's problem under no default.

� We use a convergence criterion for the savings policy function under no default

of 10−5:
1

NB ×Ns

∑
(B,s)

∣∣∣B′t−1 (B, s)−B′t (B, s)∣∣∣ < 10−5

2. Implied default policy and value functions

• We then use the no-default value function {V c
t (B, s)} to derive updated default

policies {dt (B, s)} and updated value functions
{
V d
t (B, s) , V o

t (B, s)
}
that solve

the government's default decision.

3. Implied default debt prices

• We �nally update the debt pricing during default to
{
qdeft (B, s)

}
using the up-

dated policy functions. This is done by iteratively solving the default pricing

equation (given {qt−1 (B, s)} and {dt (B, s)}).

� We use a convergence criterion for the the default debt pricing of 10−6:

1

NB ×Ns

∑
(B,s)

∣∣∣qdeft−1 (B, s)− q
def
t (B, s)

∣∣∣ < 10−6

4. Updated debt pricing functions
{
qt−1 (s, B

′) , qdeft−1 (B, s)
}

• The inner loop for the value function iteration above yields updated policy func-

tions {B′t (B, s) , dt (B, s)} and updated value functions
{
V o
t (B, s) , V d

t (B, s) , V c
t (B, s)

}
3Our algorithm is parallelized using OpenMP whenever possible.
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• We then update the debt pricing in default to {qt (B, s)} using the updated policy

functions. This is done by iteratively solving the debt pricing equation (given{
qdeft (B, s)

}
and {dt (B, s)}).

� We use a convergence criterion for the the debt pricing of 10−6:

1

NB ×Ns

∑
(B,s)

|qt−1 (B, s)− qt (B, s)| < 10−6

5. Convergence and stability

• We allow the number of iterations in the debt pricing loop to be arbitrarily high

for convergence but we adopt a penalty approach to guarantee convergence and

prevent cycling in the savings policy.

• Speci�cally, we increase a penalty parameter χk ≥ 0 whenever the debt pricing

loop convergence criterion stops monotonically decreasing.4

� This penalty is implemented as a quadratic adjustment cost to the debt policy

function inside the value function iteration step (a):

χk

(
B′ −B′t−1 (B, s)

)2
• We actually use an outer loop of adjustment costs {χk} that nests the debt pricing
function loop

� We verify at convergence that the consumption bene�ts of this penalty ap-

proach are negligible. To do so, we compare the debt policy at convergence

with χk > 0 to the one-shot relaxation of the penalty using χ = 0.

1.3 Simulations

Once the Markov Perfect Equilibrium is solved, we compute key equilibrium outcomes by

performing NS = 5, 000 random simulations, each with Tsimul = 20, 100 periods. We re-

seed the random generator across draws and we discard the �rst Terg = 100 periods of the

simulation to avoid path dependence on the initial state of debt B0 = 0.5

4With long-term debt pricing, this non-monotonicity can occur when the optimal savings policy starts
cycling and induces changes in the default policy, which in turn a�ect the debt pricing.

5We compiled the programs using Intel Fortran 17.0.7. They were executed on 64-core nodes (quad 16
core 2.4 GHz AMD Opteron processors).
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